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Energy Transformation Between the Inductor and
the Power Transistor for the Unclamped
Inductive Switching (UIS) Test

Karuna Nidhi ', Jian-Hsing Lee

Abstract—The fundamental model of energy transformation
between the inductor and the power transistor for the unclamped
inductive switching (UIS) test is inspected. Based on the exper-
imental results, the energy stored in the inductor at the period
of the channel turn-on can be dissipated by the power transistor
after the channel is turned off. In this work, a new theoretical
model to well describe the electrical and thermal behaviors of the
power transistor during the unclamped inductive switching (UIS)
test has been identified and analyzed with the experimental silicon
results under different inductor values in 0.15 pm BCD process.
The total UIS energy reduced due to series resistance of the induc-
tor and the power transistor has been theoretically explained and
well matches with the experimental measured results on silicon.

Index Terms—Unclamped inductive switching (UIS), avalanche
breakdown, power transistor, inductor, series resistance, second
breakdown.

I. INTRODUCTION

HE UNCLAMPED inductive switching (UIS) test is

widely accepted and implemented in the power metal-
oxide- semiconductor field-effect-transistor (MOSFET) family.
It is very crucial for the power device reliability since it hap-
pen during uncertain and abnormal conditions. It has been
a methodology to qualify the ruggedness and the robustness of
the power transistors, as shown in Fig. 1 [1]-[8]. The method-
ology is based on the channel of the power transistor turns on
to provide a low impedance current path to ramp up the cur-
rent Ip of the inductor L, as the voltage Vg is applied to the
gate. Then, the Vg and Vpp drop down to OV to turn off the
channel (T, in Fig. 1). Since the current of an inductor cannot
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Fig. 1. Schematic diagram for UIS test and associated waveforms.

be changed instantaneously, the power transistor is forced to
bias at the avalanche breakdown region to keep the current
flowing. This causes power transistor to operate at the high
voltage and current Ip to fall with time. After the channel
turns off, all energy stored in the inductor at the period of the
channel turn-on (T; in Fig. 1) is transmitted into and dissi-
pated by the power transistor. This is the conventional model to
describe the energy transformation between the inductor and
the power transistor for the UIS test [7]-[13]. The typically
measured maximum current and voltage (just before failure)
waveforms of large array device (LAD) 5-V NMOSFET for
the UIS tests of W = 6000pm and W = 12000pm under
L = 0.5 mH are shown in Fig. 2(a) and (b), respectively. If this
conventional model was true, then the time in avalanche (T;)
should be longer than 37 ps and 66.4 s in Figs. 2(a) and (b),
respectively. Table I shows the calculation of T, based on
the conventional UIS model (T, = LI,/V,) for the condition
W = 6000pm and W = 12000pm under L = 0.5 mH. This
deviation arises from the series resistances of the inductor and
the power transistor. These series circuit resistances reduce the
device avalanche stress. The lack of accuracy in the calcula-
tion of the UIS energy handling capability of the power FETs
create misconception of design goal. Hence it leads to many
unnecessary iterations to achieve the desired results and con-
firms the unpredicted anomalous behavior of the test device.
It is important to note that the real applications involving the
UIS must contain the series resistance from the used inductor
and any other series elements. Hence in this paper, a new the-
oretical model and the previous equations used to model the
UIS calculation is compared along with measured curves to
overcome the inaccuracy in the UIS energy calculation.
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Fig. 2. The maximum measured current and voltage waveforms just before
failure for the UIS test (a) W=6000um and (b) W = 12000xm under
L = 0.5mH.

II. UIS ENERGY OVERVIEW

The unclamped inductive switching has demonstrated to be
one of the proficient parameter in the power electronics design
since mid 80’s. Even as latest devices from FETs, IGBTs,
and super-junctions are prone to the UIS instabilities as sev-
eral papers and application notes in literature have investigated
and demonstrated for the maximum energy capability before
fail, failure mechanism and the energy capability improvement
methodology [1]-[5], [7]-[16]. Well over 500 literatures have
been published either entirely or in part, with the subject of
UIS mechanism. Recently, the increasing use of MOSFETS in
automotive and switching applications makes the necessity to
have the proper avalanche ruggedness under UIS at inductive
operations. To access the robustness under pulsed conditions
the maximum energy capability of the power devices must
be evaluated before failure. The UIS occurs when FET is
connected to a parasitic or lumped inductance and there is
a change in current. An inductor is very much dependent upon
the physical dimensions of the coil. As such, high values of
inductance are avoided in circuit design when size constrains
are in effect. The permeability component of the inductance
is the permeability of the material that is encircled by the
coil [17]. Inductors will always have resistance associated with
the windings of the coil and whenever current flows through
a resistance energy is lost in the form of heat due to Ohms
Law, (P = I’R) regardless of whether the current is alternating
or constant.

As the inductor charged up, i.e., the energy is stored in
the magnetic fields of the inductor, the current in the inductor
cannot change instantaneously [17], [18]. During the storage
phase of the inductor, Iy (sTorRAGE) current charges through the

inductor is
V1 _(Rr
I1.(sTORAGE) = 77(1 —e ( L )t> (1)

where V1 represents to the voltage supply and L is the inductor
used, and Rt refers the total series resistance of the circuit.

While in releasing phase, the current discharges through the
inductor is I (RELEASE)

V1 _(Rr
I1(RELEASE) = 7T<€ ( L )t> 2)

The inductor dissipates its stored energy into the FET dur-
ing UIS test. The operating conditions are calculated rather
than measured since the determination of the UIS capabil-
ity using measured values for Ipy and T, seemed trivial
and self-explanatory. The conventional method for the energy
calculation as

Emax = %LI,ZJM 3)
where Epax is the maximum energy capability, L is the
inductor used, and Ipy; is maximum current before failure.

To account for the real testing conditions, the energy han-
dling capability of the UIS is classified based on the role of
resistances. The UIS energy calculation is classified in two
ways based on with and without taking resistances in account.
Most of the conventional based methods follow the energy
calculation without having resistances in account. The energy
calculated by Eq. (3) is not equal to the calculated energy
stored or dissipated by the inductor or the device. Calculations
based on Eq. (3) do not take into account any resistance in
the UIS circuit and Eq. (1) along with Eq. (2) are completely
ignored. It is important to mention that the Eq. (3) is not valid
for the circuit shown in Fig. 1, and it is only valid if the power
supply is removed by switches S1 and S2 when turning the
device off. Otherwise the dissipated energy will be significant
higher.

During the UIS measurement, resistances play a role
as energy consumers [18], [19]. To the best of authors’
knowledge, only few articles have considered the
resistors [11], [19]-[21]. As the wunclamped inductive
capability is an interactive function of other environmental
stresses, it is necessary to include some calculation of other
operating conditions as part of this analysis. The application
note from Vishay Siliconix semiconductor and Fairchild
semiconductor has mentioned the role of resistors during the
calculation of the UIS energy in their data sheets [11], [20].
However, all the parameters are still not properly counted into
the power for the energy derivations of the power transistors
in any of these articles.

III. NEW MODEL FOR THE UIS TEST

The device layout used for the UIS test is shown in Fig. 3,
which is a multi-fingered large array device with the channel
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Fig. 3. Layout top-view of 5V-NMOSFETs.

Fig. 4. For UIS test (a) commercially used UIS tester ITC55100 and (b) sim-
plified schematic diagram.

length of 0.6pm, unit finger width of 75um. LAD structures
with total width of 6000pm and 12000pm is considered to
study in this paper. Except the P+ guard ring, each source of
the device is butted with a P+ pick-up (S and B in Fig. 3) to
equalize the substrate resistance (Rgyp) of the parasitic n-p-n
bipolar junction transistor (BJT).

The equipment used to evaluate the UIS test, a commercial
UIS tester ITC55100 is shown in Fig. 4(a) and its simplified
schematic diagram as shown in Fig. 4(b) [21]-[23]. In this
paper, SOP-8 type package is used for the UIS measurement.
The voltage and current waveforms of the 5-V NMOSFETsS for
L = 0.5mH under the UIS test have been shown in Fig. 2. At
the onset of the test, the switch S1 closes, and the voltage Vg is

00 WrY%
L |D(t) é Fzequivalent= I:zD"' m RS
VSP
Reuis Q1
= Vg M=(B+1)/pM

Fig. 5. The equivalent circuit of the device under the UIS test at the period
when the channel turns off.

applied to the gate of the transistor Q1. So, the current starts to
flow from the power supply Vpp to Q1 through the inductor L,
resulting in the current Ip; increasing linearly with time (0 to
202s in Fig. 2(a) and 0 to 337us in Fig. 2(b)). As the current
reaches the setting point (I,), the switches S1 opens, S2 closes,
and the channel of transistor turns off (Vg = 0V) [20]-[26].
Then, the inductor releases its stored energy to keep the current
flowing, resulting in the current Ip; decreasing linearly with
time (202us to 239ws and 337ps to 403.4us as shown in
Fig. 2(a) and (b), respectively). Due to the switches, there is
an arc occurred at the transient that the switch S1 turns off
and switch S2 turns on to result in the current (Ispike) higher
than the I,.

The equivalent circuit and cross-sectional view of the 5-V
NMOSFETs at the period, when the channel turns off, are
shown in Fig. 5.

Based on the circuit shown in Figs. 6(a) and (b), the drain
current Ip can be written as

dIp(1)
dt

L

+Rrlp(t) +Vsp =0 @

where Rt = Rp + Requivalents RL is the series resistance
of the inductor [11], [19], [20] depends on types of induc-
tor is used for the testing, Requivalent i the equivalent series
resistance of the drain and source can be calculated either
by SPICE model [27], [28] or measured from IV curve, and
Vsp is the summation of the voltages across the drain and
the source junctions (V¢ + VEg), which can be treated as
a constant when the parasitic n-p-n BJT turns on [29], [30].
In the UIS measured waveforms, Vsp value is chosen at the
end of discharging period, i.e., Vgp is always 10-20% larger
than BVpgs, (in Fig. 2(a) and 2(b)) when device avalanched
near the rated capability. From Fig. 2, it can be found that the
5-V NMOSFETs are biased at the avalanche regime (>11V)
when the channel turns off (T).

Assuming the channel turn-off transient (202us in Fig. 2(a)
and 337us in Fig. 2(b)) as the time zero, the drain current (Ip)
of 5V NMOSFETs is

In() = I exp(_lzﬂ) _ ‘;—S:<1 _ exp<_lzﬂ)) )

where I, = Ip(0).
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Fig. 6. Measured and calculated (a) voltage and current waveforms,
(b) powers under W = 6000m.

The drain voltage (Vp) of 5-V NMOSFETs is

—Rrt Vsp —Rrt
Vp(t) = Iy CXp( 2 > — R_T<1 - exp<T>>Requivalent

+ Vsp (6)

So, the power (Pp) can be written as

Pp(t) = Ip(t)*Requivatent + Ip(t) Vsp

2Vsply ~ Vip (—ZRTt)
=3+ + =) ex
[( R TR TUL

2Vsp Vsp —Rrf\  Vip
- Ry <IO+ R_T exXp T + R_% Requivalent

()3l
(7

Figs. 6(a) and 7(a) show the calculated voltage and current
waveforms based on Eq. (5) and Eq. (6) with Rt of 15 and
Requivalent Of 1.33€2, which can well match the measured result
in Fig. 2(a) while Requivalent 0f 0.7€2 for W = 12000um in
Fig. 2(b). Hence, the calculated maximum power based on
Eq. (7) also can well fit the measured power based the mea-
sured I-V curves in Fig. 2. These give the direct evidences
to prove that the three equations can well depict the electri-
cal and thermal behaviors of the 5-V NMOSFETSs under the
UIS test.
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Fig. 7. Measured and calculated (a) voltage and current waveforms,
(b) powers under W = 12000m.

The energy stored on the inductor is released completely
as the drain current Ip decreases to zero. Thus, the energy
releasing time of the inductor (T) from Eq. (4) is

r=Ly (1 i IORT) 8)
= —In _
Rt Vsp

Integrating the generated powers, the energies dissipated by
the 5-V NMOSFETs (Ep) is obtained as

T T
Ep = / P(t)dt = / ID(I)ZRequivalent +Ip(?) VSPdt
0 0
L 2Wply V2 IR\ 2
== [3 4 25RO TSPy (g 4 28T
2Ry Rr R% Vsp
2LV, V. IR\ ™
ZSP(10+ﬁ> - <1+ﬂ>
R} Rt Vsp

VZ,L IoRT
+ ;_};ZL”<1 + V_SP) Requivalent

L IoR7\ ™!
N
|:RT |: Vsp
VspL IoR
- e Ln<1+ﬂ)+(1+
R; Vsp
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Fig. 9. The UIS Waveforms for L = 1.0mH under W = 6000um, (a) measured current and voltage waveforms, comparison between measured and
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.. . . TABLE 1
Similarly, the energy generated by inductor (EL) is CALCULATION OF TIME IN AVALANCHE (T5) BASED ON
calculated as CONVENTIONAL UIS MODEL UNDER 0.5MH
T
E = / Ip(®)2Rydt (T,LI/V,) W=6000pm W=12000pm
0 T, (0.5mHx1.6A/13V) |(0.5mHx2.7A/13V)
2Vsply =61.5us =103.8ps

L V2 IoR7\ 2
=|—(2+ + 3P 1—<1+—>
|:2RT ( 0 Rt R% Vgp

-1
2LVsp Vsp loRT .
- — b+ . 1—(1+ Ver the 5-V NMOSFETs. Moreover, the energy dissipated by the
Ry T sp series resistance of the inductor is no less than that by the 5-V
VZ,L IoRT NMOSFETs and this effect cannot be neglected.
+ P2 1+ == ) |Requi (10) -
R Vsp equivalent To approve the calculation from Eq. (9) and Eq. (10), the
T

From Table II, the dissipation energy (Ep) of the 5-V
NMOSFETs based on Eq. (9) is very close to that evaluated
by integrating the measured power in Fig. 6(b) and 7(b). This
demonstrates that Eq. (9) is valid for calculating the dissipa-
tion energy of the 5-V NMOSFETs. It also can be seen that
the energy (LI?/2) stored on the inductor during the channel
turn-on period (T; in Fig. 2) is equal to the summation of the
energies dissipated by the 5-V NMOSFETs (Ep of Eq. (9))
and the series resistor of the inductor (Ep of Eq. (10)). It
is verifying that the Eq. 3 (LI?/2) is not all dissipated by

UIS test has been performed with two other inductor val-
ues (L = 0.75mH and 1mH) under W = 6000um. The
voltage and current waveforms, of the 5-V NMOSFETs for
L = 0.75mH and L = 1mH under the UIS test have been
shown in Figs. 8(a) and 9(a), respectively. It is clearly shown
that an arc occurred at the transient that the switch S1 turns
off and switch S2 turns on to that result in the current (Ispike)
higher than the I,.

The discharging time T, when channel turned off is
48us and 62us under 0.75SmH and 1mH, respectively.
Figs. 8(b) and 9(b) show the calculated voltage and current
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TABLE 11
STORED AND DISSIPATED ENERGIES IN THE INDUCTOR
AND 5-V NMOSFETs UNDER L = 0.5MH

0.5L1 Energy Epb E.
measured in (Eq. (Eq. (10))
Fig. 7 and 8 9)
W=6000um| 6.4E-4 3.31E4 3.18E-4 | 3.24E-4
Joule Joule Joule Joule
W= 12000um| 18.2E-4 10.2E-4 9.9E-4 10.1E-4
Joule Joule Joule Joule
1.2x10° .

I I
—&— Calculated by conventional method 0.5
—A— Measured plot data by ITC 55100
1.0x10” =@ Calculated from Eq.(9)
—k— Calculated from Eq.(10)

8.0x10"

6.0x10"

4.0x10™*

2.0x10°*

Energy Stored and Dissipated (Joule)

0.0 1 1 1
0.50 0.756 1.00

Inductor (L) (mH)

Fig. 10. Energy comparison between calculated by Eq. (3) and stored or
dissipated energy in 5-V NMOSFETs.

waveforms based on Eq. (5) and Eq. (6) which are very well
match the measured result in Figs. 8(a) and 9(a), respec-
tively. The calculated power based on Eq. (7) also compared
with the measured power based on the measured I-V curves
in Figs. 8(a) and 9(a) as shown in Figs. 8(c) and 9(c),
respectively. From Figs. 8 and 9, it can be concluded that
Egs. (5), (6), and (7) can fit perfectly to the measured data from
the UIS tester.

Table III shows the stored energies and the dissipated ener-
gies under different inductor values (L = 0.5mH, 0.75mH,
and 1.0mH). The comparison is shown between conventional
calculation (LIz/Z), measured data from UIS tester, calculated
from Ep (Eq. (9)), and calculated from Ep, (Eq. (10)) for dif-
ferent inductor values. Fig. 10 shows the energy stored and
dissipation comparison under different L values. The real cal-
culation from measured data is almost half of the conventional
calculated energy by Eq. (3). This much variations use to
create misconception during design and hamper the design
goal.

IV. CONCLUSION

For the power transistors, the series circuit resistance
reduces the device avalanche stress during unclamped induc-
tive switching (UIS) test at inductive operations. A theoretical
model for the UIS has been demonstrated and practically veri-
fied with-in silicon experimental results that can well describe

TABLE III
COMPARISON BETWEEN THE STORED AND THE DISSIPATED ENERGIES AT
DIFFERENT INDUCTORS (L = 0.5/0.75/1.0 MH) IN 5-V NMOSFETSs

L=0.5 mH L=0.75 mH L=1 mH
0.5LI% 6.4E-4 Joule 7.88E-4 11.25E-4
Joule Joule
Energy 331E-4 NA NA
measured in Joule
Fig. 7(b)
Energy NA 4.04E-4 NA
measured in Joule
Fig. 8(c)
Energy NA NA 5.93E-4
measured in Joule
Fig. 9(c)
Ep (Eq. (9)) 3.18E-4 4.07E-4 5.81E-4
Joule Joule Joule
Er (Eq. 10) 3.24E-4 3.84E-4 5.56E-4
Joule Joule Joule

to the electrical and the thermal behaviors of the power tran-
sistor under the UIS test, as long as the series resistances of
the inductor and the power transistor are counted. Otherwise,
the dissipation energy of the power transistor during the UIS
test will be overestimated.
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