[摘要] |
隨著處理器運算的速度越來越快,但是在許多的應用上,真正效能的頻頸卻是在晶片間或 |
是PCB板間資料傳輸的頻寬上。另一方面,接墊尺寸縮小的速度遠遠比不上製程演進的速度 |
。所以,最好的解決方法就是使用高速介面傳輸電路,利用有限個數的接墊來傳送大量的 |
資料。 |
許多的數位系統使用完整振幅的訊號來傳送資料,這在高速和低功率方面是不適合的。而 |
若要達到高速且低功率的要求,則差動低電壓振幅模式來傳送訊號是較佳的選擇。 |
本論文的研究有兩部份,第一部份是2
Gbps訊號傳送機的電路設計,它是利用0.25um CMOS |
的製程來實現,且操作在2.5V的電壓下,收發速度能達到2
Giga-bit/s。 |
論文的第二部份則是正向射極耦合邏輯(PECL)傳送機電路設計,它是利用操作在3.3V 0. |
35um CMOS 的製程來實現,與ECL
100K的邏輯電路相容,該電路之高電壓準位為2.35V,低 |
電壓準位為1.58V,其傳送速度能達到數百mega-bit/s以上。 |
|
[摘要] |
The operation speed of
processor becomes more and more fast, but for many |
application systems, the major
performance limit factor is the interconnection |
bandwidth between chips or
boards. In the other hand, as technology continues |
to scale down, the size of pad
scale more slowly. Therefore, using high speed |
I/O interface circuit in
limited pads to transmit huge data is the best |
solution. |
Many digital systems use
full-swing signaling method that is unsuited for high |
speed and low power. For taking
high speed and low power into account, the |
transceiver uses differential
small voltage swing to transmit signal. |
The researches of this topic
have two projects. The first one, Transmitter for |
2 Gbps signaling is implemented
by 2.5V 0.25μm CMOS process and the data rate |
is up to 2 giga-bit per second. |
The second one, Positive
Emitter Couple Logic (PECL) transmitter is implemented |
by 3.3V 0.35μm CMOS process,
and the data rate is up to hundreds mega-bit per |
second. |
|